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<Summary> This paper introduces a multi-sized particle sampling method within an arbitrary 2D shape

using power tessellation. Our method aims to improve packing density as to sample as many particles as

possible in a limited area. We propose a porosity-driven optimization technique to ensure no overlap between

particles while increasing the packing density. With such properties, our method is applicable to physically-

based simulations, such as the Discrete Element Method and its related framework. Additionally, this

technology allows users to set the target particle size distribution by a predesigned cumulative distribution

function and restrict the errors between 10% and 20% after the optimization. We demonstrate that our

multi-sized particle sampling algorithms significantly improve packing density compared to Poisson disk

sampling and SPH-based blue noise sampling.
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1. Introduction

Uniform particle sampling is a highly applicable tech-

nique in many graphics-related fields, such as image syn-

thesis, rendering, geometry processing, and physically-

based simulations. Notably, it has played an essential

role in particle-based physics simulations in recent years.

Meanwhile, several adaptive particle (multi-sized) sam-

pling methods1)–3)are also implemented into the fluid sim-

ulation. However, it is not well suited for simulating gran-

ular materials, such as sand, because slight overlap can

destabilize the simulation. Therefore, we aim to achieve

multi-sized particle sampling in arbitrary 2D polygons

and have it available for using in stable physics-based

sand simulations.

This paper proposes a multi-sized particle sampling

algorithm using weighted centroidal power tessellation.

It computes the particle distribution by minimizing the

porosity in a pre-defined 2D polygon. Our contributions

are as follows:

• We present a novel multi-sized particle sampling

method based on minimum porosity. Our method

ensures no overlapping occurs between particles and

effectively exploits the limited space to improve sam-

pling density.

• Our method supports users to give a target particle

size distribution using a predesigned cumulative dis-

tribution function and limits the error between 10%

and 20% after the optimization.

• Multi-sized particles sampled by our method are

available to the Discrete Element Method (DEM)

and can realize stable physical simulations, whereas

the particles sampled in the comparison experiments

fail to perform stable physical simulations.

2. Related Work

2.1 Uniform particle sampling

Blue noise sampling is a well-known method used in

computer graphics because of its ability to generate ran-

dom uniform distributions. One of its patterns, Poisson

disk sampling, has many rendering and geometry pro-

cessing applications. Bridson4)proposed a fast Poisson

disk sampling method that is effective and more easily

implemented in arbitrary dimensions. While this method

has a wide application, it is difficult to control the sam-

pling density and ensure no overlapping between parti-

cles. Traditionally, uniform particle sampling within a 2D

polygon is mainly implemented by dividing the plane as

the uniform grids (Voxelization in 3D5)) and generating

a particle in each uniform grid. However, it will result

in a particle distribution that does not fit the bound-

ary shape. As a solution to this problem, Schechter

et al.6)proposed a relaxation-based sampling method to

smoothen the particles on the boundary. Later, Jiang et

al.7)applied the Smoothed Particle Hydrodynamics (SPH)

method to achieve blue noise sampling, which can also re-
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Fig. 1 Schematic diagram of porosity

alize uniform particle sampling by relaxing the boundary

particles. Although these methods work well for uniform

particle sampling, what we expect as multi-sized particle

sampling and stable sand simulation cannot be fulfilled

by simply extending their method.

2.2 Adaptive particle sampling

In order to achieve high-performance SPH-based fluid

simulation, Adams et al.1)presented a dynamic sampling

method, which can dynamically adjust the size of the

sampled particles by computing the distance between the

medial axis and fluid surface. Jiang et al.7)integrated

the adaptive particle sampling method and proposed an

SPH-based blue noise sampling to treat multi-sized par-

ticles. Winchenbach et al.2)proposed an adaptive incom-

pressible SPH-based fluid simulation method and an im-

proved framework3)adapted to higher volume ratios for

simulating low-viscosity turbulent flows and achieving the

high-resolution rendering of fluid surfaces. However, since

these algorithms are all SPH-based, there will be overlap-

ping between the multi-sized particles, which make the

multi-sized sand simulation unstable.

2.3 Voronoi diagram and centroidal voronoi
tessellation

The Voronoi diagram has been widely used in the

area of computer graphics. It has many applications in

physics-based simulations of computer animation, such

as power particles8), adaptive staggered power particles9),

power diagram-based high-resolution adaptive liquids10).

Over time, several GPU-based algorithms diagram have

been developed aiming to speed up the computation of

the 3D Voronoi11)–14). Among these methods, centroidal

Voronoi tessellation (CVT) for reaching a specific den-

sity distribution is also one of the critical topics related

to the Voronoi diagram. CVT can be regarded as one

of the relaxation-based sampling methods. It has two

stages of computation: 1. Randomly generates the point

set. 2. Using Lloyd iterations to optimize the loca-

tion of the points until convergence. However, directly

using CVT will not cause the sampled points to have

better properties of blue noise. Balzer et al.15),16)pro-

posed a capacity-constrained Voronoi tessellation, which

can generate high-quality blue noise properties and per-

fectly fit a known density function. According to the fea-

ture that the energy function of CVT has second-order

smoothness, Liu et al.17)presented a faster convergence

CVT method. Chen et al.18)proposed a parallel algorithm

for CVT on GPU and verified the algorithm’s perfor-

mance, which can obtain good blue noise characteristics

and high-speed computing. All these methods described

above have difficulty in extending to multi-sized particle

sampling. On the other hand, CVT was used to study

the hierarchical data visualization presented by Balzer et

al.19). They called this approach “Voronoi Treemaps”.

Later, Nocaj et al.20)introduced a faster, more straight-

forward, and resolution-independent method for comput-

ing Voronoi treemaps. While this approach can generate

multi-sized particles, the user needs to pre-define a large

amount of data since its computation is based on hier-

archical data. Besides, sampled results are singular with

the same data.

2.4 Physics based granular material simula-
tion

Granular material simulation-related studies have a

long history in the computer graphics community21)–25)

. Numerous works in recent years still focus on sand-

water mixing simulation frameworks, such as SPH-based

multi-phase multi-material flows26),27)and material point

method (MPM) based simulations of a mixture of sand

and water28),29). Since the particle-particle approach

(DEM) could better capture small-scale features at the

particle level, several studies have also employed this

method to make sandy-like animation, e.g., hybrid grains
30)and seepage flow framework31).

3. Porosity Optimization Based Approach

This section will introduce our porosity optimization-

based method of how to sample multi-sized particles.

3.1 Controllable porosity

Generally, a rock or soil’s porosity is measured by the

fraction of the total soil volume occupied by pore space

per unit volume. As shown in Fig.1, the porosity ϕ is

defined as:
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Fig. 2 Result of standard gridding approach
based uniform particle sampling

ϕ = 1− Vsoil

Vtotal
(1)

where Vsoil is the volume of soil particles, and Vtotal

presents a unit soil volume. The high ratio of soil par-

ticles in the unit volume will produce minor porosity.

Hence we can improve the packing density within the unit

volume by reducing the porosity and filling the limited

space with more particles. Thanks to the controllability

of the porosity, we can obtain higher packing densities

and multi-sized particles by using a power diagram and

porosity optimization.

3.2 Power diagram

There are n points S = {s1, s2, . . . , sn} (si

called Voronoi site) in the plane, Voronoi diagram

is made by dividing the plane into n regions R =

{R (s1) ,R (s2) , . . . ,R (sn)} (each site si ∈ S and its as-

sociated region R (si) are called Voronoi cell) and each

region has only one point. Given an arbitrary 2D poly-

gon as boundary Ω, Voronoi cell R (si) can be defined

as:

R (si) = {p ∈ Ω : ∥p− si∥ < ∥p− s∥

for each s ∈ S − si} (2)

When assigning a weight wi to each Voronoi site si,

we call this Voronoi diagram as Power diagram which is

defined as:

R (si, wi) = {p ∈ Ω : ∥p− si∥2 − wi < ∥p− s∥2 − w

for each s ∈ S − si} (3)

When the weights wi of all Voronoi site si are equal

to zero, the power diagram is equivalent to a Voronoi

diagram.

In contrast to the Voronoi diagram, the power diagram

allows us to control the shape and size of each Voronoi

Fig. 3 A ideal case of the geometric relationship
between the Voronoi cells and its weights

cell in a relatively simple way. It means that we can

more readily manipulate the size of the sampled parti-

cles and the porosity of the entire space. For controlling

the size of Voronoi cell, there are many studies related to

the capacity-constrained method. In these studies, some

methods combined power diagrams with a false position

method to obtain the different sizes of Voronoi cells16)or

integrated with Newton’s method32), L-BFGS method33)

. However, all these methods have a high computational

cost and require optimization parameters tuning. As for

our method, it is less complicated and more straightfor-

ward to control the size of the Voronoi cell. Though

the precision is slightly inferior, it significantly improves

packing density.

3.3 Requirements of multi-sized particle sam-
pling

Using the standard gridding approach (Fig.2) as an

example, when we generate particles in a unit cell, the

minimum porosity is a fixed value of 1 − π
4 . It makes

minimum porosity become a constant value and impossi-

ble to adjust dynamically.

According to the properties of the power diagram, the

plane are divided into several Voronoi cells and each of

them will be a convex polygon with a weight factor that

can adjust its associated region. What inspires us is that

it is possible to obtain sampling results with different

porosity sizes by adjusting each Voronoi cell’s weighting

coefficients. During the Lloyd iteration, as changes in the

weight coefficients of each Voronoi cell impact the shape

and size of its associated region, it makes both the size of
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particles and the pore size of its associated region change-

able in each Voronoi cell. This property of the power

diagram makes it possible to achieve multi-sized particle

sampling within a given boundary. In order to achieve

multi-sized particle sampling with a higher packing den-

sity, i.e., finding a minimum porosity sampling case, we

summarize the requirements for the power diagram where

the minimum porosity is obtainable, which we consider

an ideal case:

Requirement 1: If each side of the Voronoi cell has

the same length, then it is a regular polygon.

Requirement 2: If n Voronoi sites encircle a Voronoi

site, its associated Voronoi cell is a regular n sided poly-

gon.

Requirement 3: In the case of satisfying n → ∞ and

each side d of Voronoi cell has the same length, the shape

of Voronoi cell is closer to the circle, porosity ϕ→ 0 .

Requirement 4: Each Voronoi site must be at the cen-

troid of its associated Voronoi cell.

Notably, the ideal case described above is only a sce-

nario envisioned for each Voronoi cell. It is impossible

that the Voronoi cell can fully satisfy all the given four

requirements locally or globally, but we can design the

loss functions based on the requirements of an ideal case.

Specifically, as the requirements are formulated for each

Voronoi cell, the objective is to locally make each Voronoi

cell meet the requirements and find a globally optimal so-

lution.

3.4 Optimization

3.4.1 Objective function

To satisfy the requirements described in Section 3.3, we

sketched Fig.3 to represent an ideal case of the geometric

relationship between the Voronoi cells and their weights.

In this ideal case, Voronoi site A with B, C andD circling

it satifies the conditions in Fig.4(b), which means that

computing the length of twin edge ab between Voronoi

sites A and B is sufficient to know the weight of any

site. Notably, it doesn’t mean that we ignore the weight

of the other Voronoi site but it has been taken into ac-

count in the computing power diagram (the power dia-

gram will be reconstructed before updating the weights

of Voronoi sites, as detailed in Algorithm 1). As for com-

puting power diagrams, we mainly rely on the method

proposed by Aurenhammer34). They bring a general d-

dimentional power diagram up to compute with a d+1

dimensional convex hull. Briefly, they transform a 2D

weighted Voronoi site s ∈ S into a sphere with coordi-

nates (xs, ys) and radius r =
√
ws mapped into the 3D

plane, and then intersect with other transformed Voronoi

sites on a 3D plane and finally apply an inverse transfor-

mation project onto the 2D plane (details can be found

in Aurenhammer34)or Nocaj et al.20)). The circles with

the solid line in Fig.3 are the projection results, and their

radii are the root of the weights of the associated Voronoi

sites (i.e., the radius of Voronoi site A equal to
√
wA).

Assuming that there exist n points around Voronoi site

SA, Ideally, the side length dA ofR (SA) can be computed

as follows:

dA = 2
√
wA − r2A (4)

where wA is the weight of Voronoi site SA and rA is the

radius of Voronoi cell R (SA)’s maximum inscribed circle.

From the geometric properties of the power diagram,

Equation 4 is only established in the case of Fig.4(b).

When the weight of the Voronoi site is less than r2A, it will

produce the case (a) or case (c) in Fig.4, which means that

we will use a penalty function ψ (Section 3.4.2) instead

of shape loss function ΦP for preventing two sites from

being too close or too far apart.

To satisfy requirements 1, 2, and 3 in Section 3.3, we

focus on information about the adjacent Voronoi sites

rather than the shape of the target Voronoi cell. It is

because each edge of the target Voronoi cell is generated

using the weights of the neighboring Voronoi sites. We

consider updating the weight of the target Voronoi site

for each iteration while the weights of the neighboring

Voronoi sites are fixed. Consequently, to keep each edge

of the target Voronoi cell of the same length as possible,

the update tendency of the target Voronoi site weight can

be computed by incorporating the weights of all neighbor-

ing Voronoi sites. One can define the loss function that

controls the shape part of the porosity optimization as

follows:

ΦP(w, r) =
∑
i∈S

∑
j∈S−i

∣∣wi − wj + r2j − r2i
∣∣ (5)

Meanwhile, we set a target particle radius distribution

(Equation 10) in the initial stage to control the size of the

sampled particles. According to this distribution func-

tion, we use the inverse transform method35)to ensure

that the generated target particle radii are uniformly dis-
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Fig. 4 Three possible cases between two neighboring Voronoi sites

tributed in each subinterval. Then we assign the gener-

ated target radius ri to each Voronoi site si when gener-

ating the initial power diagram or dynamically appending

particles (Section 3.4.3). Locally, the radius of the max-

imum inscribed circle in each Voronoi cell will approach

the user’s pre-set target radius. The global particle radius

distribution obtained from multi-sized particle sampling

will approximate the pre-defined particle radius distribu-

tion. Therefore, the area of each Voronoi cell in the ideal

case (assume a regular n-sided polygon) can be computed

by:

Aideal
i =

nr2i
tanπ

n

(6)

We re-generate the power diagram with new weights

with each iterative computation, and each Voronoi site

corresponds to a new Voronoi cell. In order to achieve

the target area for each newly generated Voronoi cell, we

define the loss function that controls the area part of the

porosity optimization as follows:

ΦA(A) =
∑
i∈S

Aideal
i −Acurrent

i

Atotal
(7)

where Acurrent
i is the area of Voronoi site Si associ-

ated region in the current iteration step, and Atotal is

the area of the boundary polygon Ω, which is the sum

of all Voronoi cell areas. Noticeably, the Acurrent
i is not

modified directly by the cost function, but it depends on

the shape of the corresponding Voronoi cell in the up-

dated power diagram. In addition, Acurrent
i is also used

for computing the porosity when we append new parti-

cles.

With joint the shape loss term ΦP and area loss term

ΦA, the final loss function we minimise can be defined as:

Φ(w, r,A) = αΦP(w, r) + βΦA(A) (8)

where α and β are two weighted coefficients for adjust-

ing global optimization. We apply Lloyd iteration to the

power diagram to make each Voronoi cell meet the area

requirement. Moreover, as the geometric relationship be-

tween the Voronoi cells and their weights is known, it

allows us to optimize the shape of the Voronoi cells by

adjusting the weights. Balzer and Deussen first proposed

optimally meeting area requirements via Lloyd’s method
19). It was followed by “Voronoi Treemaps”,20)which also

proved the practicability of this method. The core idea

is that the weight of each Voronoi site is increased or de-

creased in proportion to the missing or redundant areas

during Lloyd iteration. In our experiments, we found that

this method is also applicable for controlling the shape

of Voronoi cells, as shown in Fig.5 for the optimization

effect of porosity. It should note that we could perform L-

BFGS method to optimize the power diagram32),33), but

Lloyd’s method is more straightforward, faster, and eas-

ier to implement. We would like to compare the impact

of Lloyd’s and L-BFGS methods on our experimental re-

sults in the future.

3.4.2 Constrained condition

While the Voronoi diagram ensures that each Voronoi

cell only contains one Voronoi site, the power diagram

may produce 3 cases, as shown in Fig.4, which shows

that the Voronoi cell may contain zero or several Voronoi

sites. Furthermore, the case of a Voronoi cell containing

no Voronoi site or more than one Voronoi site will lead

to the wrong results of our multi-sized particle sampling

method. Our solution is not to perform the optimization

described in Section 3.4.1 when the distance dij between

Voronoi site i and j is greater than
√
wi +

√
wj or less

than
∣∣√wi −

√
wj

∣∣. Instead, we define a penalty function

ψ for preventing two sites from being too close or too far

apart, shown as follows:

ψ (wi, dij , σk) = σk

(
d2ij − wi

)
(9)

where σk = k2 presents the penalty factor in k-th iter-
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Fig. 5 The variation of porosity and loss value in the Bunny example

ation.

3.4.3 Dynamic particles appending

A fundamental issue with power diagram-based multi-

sized particle sampling is that it requires searching for

the optimal number of particles to fill the limited space.

The reason is that generating a power diagram is needed

to predetermine the number and weights of Voronoi sites.

While the optimum number of particles for filling the en-

tire space can be roughly estimated from the pre-defined

particle distribution, the weights of each Voronoi site

are difficult to compute in advance. To solve this prob-

lem, we propose a dynamic particle appending based on

porosity. Specifically, we re-compute the porosity in the

given boundary Ω at the end of each iteration and record

it. Within the recorded data series, if the current itera-

tion step is Ti, we will extract the porosity data change.

Within a range from Ti−k to Ti (data length is k), we

determine whether to append particles. We are using the

least-squares method to fit the extracted porosity data

and evaluate the slope of the fitted line. When it is lower

than the threshold ϵ, we will append new particles accord-

ing to the pre-defined particle radius distribution. We set

k = 20 and ϵ = 1e−6 in all our experiments and illus-

trate the process of dynamic particles appending method

in Fig.6.

4. Implementation

This section will introduce the multi-sized particle sam-

pling method described in Algorithm 1. The input to our

algorithm is a boundary polygon Ω, composed of a series

of 2D vertices and a list of target particle radii, and the

list is generated from a user-defined particle radius dis-

tribution. The output is a power diagram consisting of

sampled n Voronoi sites, where each site contains a parti-

cle radius. First, before the porosity optimization, we use

the Lloyd iteration to ensure that each Voronoi site is lo-

cated at the centroid of the Voronoi cell (line 22) followed

by a search for neighboring Voronoi sites (line 4). We do

not have to implement a specific neighbor search algo-

rithm. The neighbor sites’ information can be obtained

from the QuickHull algorithm.

To address the 3 cases in the power diagram (Fig.4),

the weights of the target and neighboring Voronoi sites

determine whether to perform the objective function for

porosity optimization or a penalty function (lines 6 to

12). Line 13 describes the degree to which the area of

each Voronoi cell needs to be altered. Similarly, line 14

describes the degree of variation which is capable of mak-

ing the shape of each Voronoi cell a regular n-sided poly-

gon. Then we compute the values of the area and shape

weights respectively (weights wA
i and wP

i are increased or

decreased proportionally to Φi
A and Φi

P)for each Voronoi

cell that need to be updated for reaching the ideal case

(lines 16 to 20). After updating the weighted factors, we

need to recompute the power diagram and perform Lloyd

iteration to make sure that each Voronoi site is located

at the centroid of Voronoi cell (line 21 and line 22). Fi-

nally, we use “Dynamic Particles Appending Mechanism”

to determine the convergence of the current porosity and

whether the additional particles are needed (line 23). In

all of our experiments, we set α = 1 and β = 1 for a

stable and effective optimization.

We have implemented our multi-sized particle sampling

algorithm using C++ on AMD Ryzen 9 3900X CPU. In
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Algorithm 1 Multi-Sized Particle Sampling Based on

Porosity Optimization

Input: Boundary Polygon Ω, Target Particle Radius
R1, R2, · · · , Rn

Output: Power Diagram R(S), Voronoi Sites si ∈ S with a
particle radius

1: repeat
2: R(S)← Compute Power Diagram
3: for each si in S do
4: si Neighbor Searching(ni: Number of Neighbor Sites

sj ∈ S′
i）

5: Φi
P ,Φ

total
P ← 0

6: for each sj in S′
i do

7: if (dij < |
√
wi−

√
wj |)∨ (

√
wi+

√
wj < dij) then

8: Φi
P += σk(d

2
ij − wi)

9: else

9: Φi
P +=

∑
j(

∑
j(wj−r2j )

ni
− (wj − r2j ))

10: end if
11: ΦtotalP += Φi

P
12: end for

13: Φi
A =

Aideai −Acurrenti

Atotal
(Aideai =

nir
2
i

tan π
ni

)

14: Φi
P =

Φi
P

ΦtotalP
15: end for
16: for each si in S do
17: wA

i = 1− (Φi
A − 1)2

18: wP
i = 1− (Φi

P − 1)2

19: wi += αwA
i + βwP

i

20: end for
21: R(S)← Compute Power Diagram
22: Performing Lloyd iteration
23: Performing Dynamic Particles Appending Mechanism
24: until Φglobal < ε

line 2 of Algorithm 1, we use the quick hull algorithm36)

to compute the power diagram, which is stable, fast, and

scalable for arbitrary dimensions. Additionally, we gener-

ate the straight skeleton37)in each Voronoi cell and com-

pute the position and radius of the maximum inscribed

circle in the Voronoi cell based on the straight skeleton

as the output of Algorithm 1.

5. Results

In the experiment, we set up the particle radius distri-

bution at initialization by using a cumulative distribution

function as follows:

Fradius(r) =


0.5 if 20 < r ≤ 30

0.4 if 30 < r ≤ 80

0.1 if 80 < r ≤ 150

(10)

At initialization, we randomly generate 100 points

within the boundary polygon Ω and set the maximum

iterations to 3000.

Figure 7 shows the results of our multi-sized parti-

cle sampling method at the initial stage, 200th itera-

tions, 400th iterations, 2000th iterations, and 3000th iter-

ations. We also recorded the values of the global porosity

Fig. 6 Dynamic particles appending mechanism

(Fig.5(a)) and the loss value (Fig.5(b)) during 3000 iter-

ations by taking Bunny as an example. It is worth not-

ing here that in Fig.5(b), each time the loss value drops

drastically, it is caused by triggering the dynamic particle

appending mechanism.

Even though the porosity in Fig.5(a) also declines

steadily when dynamic particle appending mechanism oc-

curs, a sudden porosity increase occurs in the shortest

time after each particle appending. This phenomenon

is caused by the global porosity optimization having

reached a steady state before adding the particles. Nev-

ertheless, after appending new particles, since the shape

optimization of each newly added Voronoi site is not suf-

ficient, this will result in the global porosity sudden in-

crease. Additionally, we measured the predefined particle

size distribution and optimized particle size distribution

over 3000 iterations in Fig.8. Intuitively, our optimized

particle size distribution is similar to the predefined par-

ticle size distribution. Quantitatively, the error rate be-

tween optimized and predefined particle size distribution

is roughly 15% according to RMSPE (Root Mean Squared

Percentage Error).

Except for the distributions we used in Fig.7, we also

experimented on whether it is possible to find a minor

porosity under different pre-defined particle radius dis-

tributions. The top of Fig.9 presents the multi-sized

particle sampling results after 3000 iterations, while the

bottom part corresponds to the pre-defined particle dis-

tribution. As a result of this experiment, setting a large
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Fig. 7 Results of our multi-sized particle sampling method

number of the small size particles will be helpful to obtain

a more negligible porosity.

As the right-most case in Fig.9 shows that our method

allows to achieve a more complicated version of the parti-
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cle distribution (containing three peaks), but in this case

it will be hard to promote the packing density.

6. Discussion

Compared to uniform particle sampling method.

Both standard gridding approach5)and Poisson disk sam-

pling4)can keep no overlapping between particles. Never-

theless, neither of them can improve the packing density

in a limited space while ensuring that the particles do not

overlap with each other. In addition, as these two meth-

ods do not obtain a balanced representation at the bound-

ary, the sampled particle clouds hardly preserve the poly-

gon’s original shape. Figure 7 demonstrates that the par-

ticles sampled by our method can ensure a smooth bound-

ary and that there is no overlap between particles while

increasing the packing density (i.e., the global porosity

is effectively reduced, as shown in Fig.5(a)). SPH-based

particle sampling methods6),7)can provide a uniform dis-

tribution at the boundary and produce a dense cloud of

particles. Unfortunately, due to the specialty of the SPH-

based method, it is not ensured that there is no overlap-

ping between the sampled particles. It could be applied

to SPH-related algorithms, but it will produce unstable

simulation results when applied to DEM-related meth-

ods. Compared to the SPH-based method7), our algo-

rithm could provide a stable DEM simulation, as shown

in Fig.10.

Compared to multi-sized particle sampling

method. Most of the adaptive particle sampling meth-

ods1)–3)focused on the appearance of detailed fluid sur-

faces or water splashes, and they had the property in

which the particle radius became larger and closer to the

center. As these methods are also based on SPH, they

have the same issues as SPH-based blue noise sampling7)

Fig. 8 Optimized and predetermined particle size
distribution

. Furthermore, we also provide a comparison experiment

with the Poisson disk-based multi-sized particle sampling

in Fig.10, which fails to achieve stable simulation results

due to the overlapping particle problem.

Compared to porosity with different sampling

method. While we illustrate the instability simulation

when the Poisson disk sampling and SPH-based blue

noise sampling methods are applied to DEM in Fig.10,

the instability problem can be simply solved by detecting

the overlapping parts between particles and modifying

the particle radius. We admit that this approach is fea-

sible but will induce a higher porosity, and the particle

radius distribution is hard to control. Nevertheless, our

approach ensures no overlap between particles and pro-

motes the packing density (minor porosity). To prove

that our method can produce a relatively more minor

porosity, we adjust the size of each particle (the radius

of each particle is reduced by 1/2 the amount of overlap)

obtained by Poisson disk sampling and SPH-based blue

noise sampling so that there is no overlap between parti-

cles. As shown in Table 1, we statistically measure the

porosity of 11 different shapes of polygons respectively

by using Poisson disk sampling, SPH-based blue noise

sampling, and our method. Based on the results, the av-

erage porosity obtained by our sampling method is the

most minor (0.165) and much better than the methods

Poisson disk sampling (0.697) and SPH-based blue noise

sampling (0.629).

7. Conclusion

This paper proposed to improve the packing density of

particle sampling in a restricted space as well as keep-

ing no overlap between particles. Our method allows

users applying stable physics simulations based on DEM

methods and related frameworks. We have introduced a

multi-sized particle sampling method based on porosity

optimization, which can obtain a particle distribution by

minimizing the porosity in a pre-defined 2D polygon. The

comparative experiments with alternative particle sam-

pling methods demonstrate that we can deliver a stable

DEM-based sand simulation.

While the experimental results have proven that our

method can adapt to a variety of 2D polygons for multi-

sized particle sampling, it still exists the case of undesir-

able sampling results as shown in Fig.11. These cases

showed that if a particle with a large radius preset near

a narrow area, it will make the effectiveness of local op-
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Fig. 9 Optimization results obtained from different pre-defined particle radius
distributions

timization quite unfavorable. Moreover, while our ap-

proach is designed to meet the pre-defined particle radius

distribution by adjusting Voronoi cells shape and size con-

tinuously, it lacks how to keep the balance of the global

particle distribution, especially for the larger-sized parti-

cles. In the future, we would like to handle these problems

through an extra constraint on the particle position dis-

tribution. Furthermore, we expect to explore a way to

extend our method to 3D multi-sized particle sampling

and adapt it to more physical simulation scenarios.
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